1,805 research outputs found

    Matrix Product State for Higher-Order Tensor Compression and Classification

    Full text link
    © 2017 IEEE. This paper introduces matrix product state (MPS) decomposition as a new and systematic method to compress multidimensional data represented by higher order tensors. It solves two major bottlenecks in tensor compression: computation and compression quality. Regardless of tensor order, MPS compresses tensors to matrices of moderate dimension, which can be used for classification. Mainly based on a successive sequence of singular value decompositions, MPS is quite simple to implement and arrives at the global optimal matrix, bypassing local alternating optimization, which is not only computationally expensive but cannot yield the global solution. Benchmark results show that MPS can achieve better classification performance with favorable computation cost compared to other tensor compression methods

    Concatenated image completion via tensor augmentation and completion

    Full text link
    © 2016 IEEE. This paper proposes a novel framework called concatenated image completion via tensor augmentation and completion (ICTAC), which recovers missing entries of color images with high accuracy. Typical images are second-or third-order tensors (2D/3D) depending if they are grayscale or color, hence tensor completion algorithms are ideal for their recovery. The proposed framework performs image completion by concatenating copies of a single image that has missing entries into a third-order tensor, applying a dimensionality augmentation technique to the tensor, utilizing a tensor completion algorithm for recovering its missing entries, and finally extracting the recovered image from the tensor. The solution relies on two key components that have been recently proposed to take advantage of the tensor train (TT) rank: A tensor augmentation tool called ket augmentation (KA) that represents a low-order tensor by a higher-order tensor, and the algorithm tensor completion by parallel matrix factorization via tensor train (TMac-TT), which has been demonstrated to outperform state-of-the-art tensor completion algorithms. Simulation results for color image recovery show the clear advantage of our framework against current state-of-the-art tensor completion algorithms

    Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train

    Full text link
    © 1992-2012 IEEE. This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via TT (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via TT (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods

    Efficient tensor completion: Low-rank tensor train

    Full text link
    This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a well-balanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion problem. The first one called simple low-rank tensor completion via tensor train (SiLRTC-TT) is intimately related to minimizing the TT nuclear norm. The second one is based on a multilinear matrix factorization model to approximate the TT rank of the tensor and called tensor completion by parallel matrix factorization via tensor train (TMac-TT). These algorithms are applied to complete both synthetic and real world data tensors. Simulation results of synthetic data show that the proposed algorithms are efficient in estimating missing entries for tensors with either low Tucker rank or TT rank while Tucker-based algorithms are only comparable in the case of low Tucker rank tensors. When applied to recover color images represented by ninth-order tensors augmented from third-order ones, the proposed algorithms outperforms the Tucker-based algorithms

    Matrix Product State for Feature Extraction of Higher-Order Tensors

    Full text link
    This paper introduces matrix product state (MPS) decomposition as a computational tool for extracting features of multidimensional data represented by higher-order tensors. Regardless of tensor order, MPS extracts its relevant features to the so-called core tensor of maximum order three which can be used for classification. Mainly based on a successive sequence of singular value decompositions (SVD), MPS is quite simple to implement without any recursive procedure needed for optimizing local tensors. Thus, it leads to substantial computational savings compared to other tensor feature extraction methods such as higher-order orthogonal iteration (HOOI) underlying the Tucker decomposition (TD). Benchmark results show that MPS can reduce significantly the feature space of data while achieving better classification performance compared to HOOI

    Multivariate Anisotropic Interpolation on the Torus

    Full text link
    We investigate the error of periodic interpolation, when sampling a function on an arbitrary pattern on the torus. We generalize the periodic Strang-Fix conditions to an anisotropic setting and provide an upper bound for the error of interpolation. These conditions and the investigation of the error especially take different levels of smoothness along certain directions into account

    Shearlets and Optimally Sparse Approximations

    Full text link
    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations of such functions. Recently, cartoon-like images were introduced in 2D and 3D as a suitable model class, and approximation properties were measured by considering the decay rate of the L2L^2 error of the best NN-term approximation. Shearlet systems are to date the only representation system, which provide optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field.Comment: in "Shearlets: Multiscale Analysis for Multivariate Data", Birkh\"auser-Springe

    Hypernetwork functional image representation

    Full text link
    Motivated by the human way of memorizing images we introduce their functional representation, where an image is represented by a neural network. For this purpose, we construct a hypernetwork which takes an image and returns weights to the target network, which maps point from the plane (representing positions of the pixel) into its corresponding color in the image. Since the obtained representation is continuous, one can easily inspect the image at various resolutions and perform on it arbitrary continuous operations. Moreover, by inspecting interpolations we show that such representation has some properties characteristic to generative models. To evaluate the proposed mechanism experimentally, we apply it to image super-resolution problem. Despite using a single model for various scaling factors, we obtained results comparable to existing super-resolution methods

    Source identification for mobile devices, based on wavelet transforms combined with sensor imperfections

    Get PDF
    One of the most relevant applications of digital image forensics is to accurately identify the device used for taking a given set of images, a problem called source identification. This paper studies recent developments in the field and proposes the mixture of two techniques (Sensor Imperfections and Wavelet Transforms) to get better source identification of images generated with mobile devices. Our results show that Sensor Imperfections and Wavelet Transforms can jointly serve as good forensic features to help trace the source camera of images produced by mobile phones. Furthermore, the model proposed here can also determine with high precision both the brand and model of the device
    • …
    corecore